# SPDX-FileCopyrightText: Copyright 2016 VTK Book Authors and Contributors # SPDX-License-Identifier: CC-BY-4.0 Chapter 4 % Equation 4-1 $$ \begin{equation*} F(x,y,z) = a_0 x^2 + a_1 y^2 + a_2 z^2 + a_3 x y + a_4 y z + a_5 x z + a_6 x + a_7 y + a_8 z + a_9 \end{equation*} \bf\tag{4-1} $$ Chapter 6 Figure 6-1 $$ \left. \begin{aligned} &s_i = min, i = 0 \\ &s_i > max, i = n-1 \\ &i =n \left(\frac{s_i - min}{max - min}\right) \end{aligned}\right. Figure 6-12 - PNG generated with http://latex2png.com/ Figure 6-12 s_i = \frac{(p_i-p_j) \cdot (p_h-p_l)}{|p_h-p_l|^2} Figure 6-21c - PNG generated with http://latex2png.com/ $$ \large\sigma{_x} &=& -\frac{P}{2 \pi \rho ^2}\left(\frac{3zx^2}{\rho ^3} -(1-2v)\left((\frac{z}{\rho\ } - \frac{\rho}{\rho+z}+\frac{x ^2 (2 \rho + z)}{\rho ( \rho + z) ^2} \right) \right) \\ \large\sigma{_y} &=& -\frac{P}{2 \pi \rho ^2}\left(\frac{3zy^2}{\rho ^3} -(1-2v)\left((\frac{z}{\rho\ } - \frac{\rho}{\rho+z}+\frac{y ^2 (2 \rho + z)}{\rho ( \rho + z) ^2} \right) \right) \\ \\ \large\sigma{_z} &=& -\frac{3Pz^3}{2 \pi \rho ^5} $$ $$ \tau_{xy} &=& \tau_{yx}=-\frac{P}{2 \pi \rho ^2}\left( \frac{3xyz}{\rho ^3} - (1-2v)\left(\frac{xy(2 \rho + z)}{\rho ( \rho + z) ^2}\right)\right) \\ \tau_{xz}&=&\tau_{zx} = -\frac{3Pxz^2}{2 \pi \rho ^5}\\ \tau_{yz}&=&=\tau_{zy} = -\frac{3Pyz^2}{2 \pi \rho ^5} $$ Figure 6-20a \huge\left[\begin{array}{ccc} \sigma{_x} & \tau{_{xy}} & \tau{_{xz}} \\ \tau{_{yx}} & \sigma{_y} & \tau{_{yz}} \\ \tau{_{zx}} & \tau{_{zy}} & \sigma{_z} \end{array}\right] Figure 6-20b \huge\left[\begin{array}{ccc} \frac{\partial u}{\partial x} & (\frac{\partial u}{\partial y} + \frac{\partial v}{\partial z})& (\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x})\\ \\ (\frac{\partial u}{\partial y} + \frac{\partial v}{\partial z}) & \frac{\partial v}{\partial y} & (\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}) \\ \\ (\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}) & (\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y})& \frac{\partial w}{\partial z} \end{array}\right] ------- Chapter 7 from Bernard Mehan % EQUATION 7-1 \begin{eqnarray*} R &=& (1 - A_s) R_b + A_s R_s \\ G &=& (1 - A_s) G_b + A_s G_s \\ B &=& (1 - A_s) B_b + A_s B_s \\ A &=& (1 - A_s) A_b + A_s \end{eqnarray*} \bf\tag{7-1} % EQUATION 7-2 \begin{equation*} \left(x, y, z\right) = \left(x_0, y_0, z_0\right) + \left(a, b, c\right) t \end{equation*} \bf\tag{7-2} % EQUATION 7-3 \begin{eqnarray*} g_x &=& \frac{f(x + \Delta x, y, z) - f(x - \Delta x, y, z)}{2 \Delta x} \\ g_y &=& \frac{f(x, y + \Delta y, z) - f(x, y - \Delta y, z)}{2 \Delta y} \\ g_z &=& \frac{f(x, y, z + \Delta z) - f(x, y, z - \Delta z)}{2 \Delta z} \end{eqnarray*} \bf\tag{7-3} % EQUATION 7-4 \begin{equation*} I\left(t_0, \vec{\omega}\right) = \int_{t_0}^{\infty} Q\left(\tau\right) e^{\left(-\int_{t_0}^{t} \sigma_\text{a}\left(\tau\right) + \sigma_\text{sc}\left(\tau\right) \, \text{d} \tau\right)} \, \text{d}\tau \end{equation*} \bf\tag{7-4} % EQUATION 7-5 % perhaps with a note that capital omega is "over all solid angles" \begin{equation*} Q(t) = E(t) + \sigma_\text{sc}(t) \int_{\Omega} \rho_{sc}(\omega' \to \omega) I(t, \omega') \, \text{d}\omega' \end{equation*} \bf\tag{7-5} % EQUATION 7-6 \begin{equation*} I\left(t_0, \vec{\omega}\right) = \int_{t_0}^{\infty} E\left(\tau\right) e^\left(-\int_{t_0}^{t} \sigma_\text{a}\left(\tau\right) \, \text{d} \tau \right) \, \text{d}\tau \end{equation*} \bf\tag{7-6} % EQUATION 7-7 \begin{equation*} I(t_\text{near}, \vec{\omega}) = \sum_{t = t_\text{near}}^{t \leq t_\text{far}} \alpha(t) \prod_{t' = t_\text{near}}^{t' < t_\text{far}}\left(1 - a(t') \right) \end{equation*} \bf\tag{7-7} % EQUATION 7-8 \begin{equation*} I(t_n, \vec{\omega}) = \alpha(t_n) + \left(1 - \alpha(t_n) \right) I(t_{n + 1}, \vec{\omega}) \end{equation*} \bf\tag{7-8} % EQUATION 7-9 \begin{eqnarray*} \frac{\partial Z}{\partial x} &\simeq& \frac{Z\left(x_p + \Delta x, y_p\right) - Z\left(x_p - \Delta x, y_p\right)}{2 \Delta x} \\ \frac{\partial Z}{\partial y} &\simeq& \frac{Z\left(x_p, y_p + \Delta y\right) - Z\left(x_p, y_p - \Delta y\right)}{2 \Delta y} \\ \frac{\partial Z}{\partial z} &\simeq& 1 \end{eqnarray*} \bf\tag{7-9} % EQUATION 7-10 \begin{equation*} \frac{\partial Z}{\partial x} \simeq \frac{Z(x_p + \Delta x, y_p) - Z(x_p, y_p)}{\Delta x} \end{equation*} \bf\tag{7-10} % EQUATION 7-11 \begin{equation*} \frac{\partial Z}{\partial x} \simeq \frac{Z(x_p, y_p) - Z(x_p - \Delta x, y_p)}{\Delta x} \end{equation*} \bf\tag{7-11} % EQUATION 7-12 \begin{equation*} I(t_\text{near}, \vec{\omega}) = \sum_{t = t_\text{near}}^{t \leq t_\text{far}} \alpha(t)\left(I_\text{a} + I_\text{d} + I_\text{s}\right) \prod_{t' = t_\text{near}}^{t' < t_\text{far}}\left(1 - a(t') \right) \end{equation*} \bf\tag{7-12} % EQUATION 7-13 \begin{eqnarray*} \vec{f}_\text{new} &=& \left(\vec{f}\cdot \textbf{M}_\text{WD} + \vec{O}_\text{p}\right)\cdot \textbf{M}_\text{DW} \\ \vec{O}_\text{w} &=& \vec{f}_\text{new} - \vec{f} \\ \vec{p}_\text{new} &=& \vec{p} + \vec{O}_\text{w} \end{eqnarray*} \bf\tag{7-13} Chapter 8 % EQUATION 8-1 \begin{equation*} x(r) = (1 - r) x_i + r x_{i + 1} \end{equation*} % EQUATION 8-2 \begin{equation*} p_\text{id} = i_p +j_p n_x + k_p n_y \end{equation*} % EQUATION 8-3 \begin{equation*} \text{cell}_\text{id} = i_p + j_p (n_x - 1) + k_p (n_x - 1)(n_y - 1) \end{equation*} % EQUATION 8-4 \begin{equation*} d = \sum_{i = 0}^{n - 1}W_i\, d_i \end{equation*} % EQUATION 8-5 % check me on this one - I was reading and guessing the meaning \begin{equation*} W_i = 1, W_{j \neq i} = 0 \quad \text{when} \quad p = p_i \end{equation*} % EQUATION 8-6 % check me on this one - I was reading and guessing the meaning \begin{equation*} \sum W_i = 1, \quad 0 \leq W_i \leq 1 \end{equation*} % FIGURE 8-3 \begin{eqnarray*} W_0 &=& 1-r \\ W_1 &=& r \end{eqnarray*} % FIGURE 8-4 \begin{eqnarray*} W_0 &=& (1-r)(1 - s) \\ W_1 &=& r(1 - s) \\ W_2 &=& (1 - r)s \\ W_3 &=& r s \end{eqnarray*} % FIGURE 8-5 \begin{eqnarray*} W_0 &=& (1-r)(1 - s) \\ W_1 &=& r(1 - s) \\ W_2 &=& r s \\ W_3 &=& (1 - r)s \end{eqnarray*} % FIGURE 8-6 \begin{eqnarray*} W_0 &=& 1 - r - s \\ W_1 &=& r \\ W_2 &=& s \\ \end{eqnarray*} % FIGURE 8-7 \begin{eqnarray*} W_i &=& \frac{r_i^{-2}}{\sum r_i^{-2}} \\ r_i &=& \vert p_i - x \vert \end{eqnarray*} % FIGURE 8-9 \begin{eqnarray*} W_0 &=& 1 - r - s - t \\ W_1 &=& r \\ W_2 &=& s \\ W_3 &=& t \end{eqnarray*} % FIGURE 8-10 \begin{eqnarray*} W_0 &=& (1 - r)(1 - s)(1 - t) \\ W_1 &=& r (1-s)(1 -t) \\ W_2 &=& (1-r)s(1-t) \\ W_3 &=& rs(1 - t) \\ W_4 &=& (1 - r)(1 - s) t \\ W_5 &=& r (1-s)t \\ W_6 &=& (1 - r)s t \\ W_7 &=& r s t \end{eqnarray*} % FIGURE 8-11 \begin{eqnarray*} W_0 &=& (1 - r)(1 - s)(1 - t) \\ W_1 &=& r (1-s)(1 -t) \\ W_2 &=& rs (1-t) \\ W_3 &=& (1-r)s(1 - t) \\ W_4 &=& (1 - r)(1 - s) t \\ W_5 &=& r (1-s)t \\ W_6 &=& rs t \\ W_7 &=& (1-r)st \end{eqnarray*} % FIGURE 8-12 \begin{eqnarray*} W_0 &=& (1 - r - s)(1 - t) \\ W_1 &=& r (1-t) \\ W_2 &=& s (1 - t) \\ W_3 &=& (1 - r - s)t \\ W_4 &=& r t \\ W_5 &=& s t \end{eqnarray*} % FIGURE 8-13 \begin{eqnarray*} W_0 &=& (1-r)(1-s)(1-t) \\ W_1 &=& r(1-s)(1-t) \\ W_2 &=& r s (1-t) \\ W_3 &=& (1-r)s(1-t) \\ W_4 &=& t \end{eqnarray*} % FIGURE 8-14 % there are several blocks of these - not sure if you needed them separate \begin{eqnarray*} x_i &=& \frac{1}{2}\left(1 +\cos\left(\frac{5\pi}{4} + i \frac{2\pi}{5}\right)\right) \\ y_i &=& \frac{1}{2}\left(1 +\sin\left(\frac{5\pi}{4} + i \frac{2\pi}{5}\right)\right) \\ i &\in& \lbrace 0, 1, 2, 3, 4 \rbrace \end{eqnarray*} \begin{eqnarray*} A &=& x_2 - x_1 \\ B &=& y_2 - y_1 \\ C &=& x_1 y_2 - x_2 y_1 \\ D &=& x_2 - x_3 \\ E &=& x_2 y_3 - x_3 y_2 \\ F &=& x_0 - x_4 \\ G &=& y_4 - y_0 \\ H &=& x_0 y_4 - x_4 y_0 \end{eqnarray*} \begin{eqnarray*} W_0 &=& -N(-As + Br - C)(Bs-Ar-C)(t - 1) \\ W_1 &=& N(Ds+Dr-E)(Fs-Gr-H)(t-1) \\ W_2 &=& -N(Bs -Ar -C)(-Gs-Fr+H)(t - 1)\\ W_3 &=& N(-As + Br -C)(Fs + Gr - H)(t - 1) \\ W_4 &=& -N(-Gs - Fr + H)(Ds + Dr - E)(t - 1) \\ W_5 &=& N(-As +Br - C)(Bs -Ar -C)t \\ W_6 &=& -N(Ds + Dr - E)(Fs + Gr - H)t\\ W_7 &=& N(Bs - Ar -C)(-Gs -Fr + H)t \\ W_8 &=& -N(-As + Br -C)(Fs + Gr - H)t \\ W_9 &=& N(-Gs - Fr + H)(Ds + Dr -E)t \end{eqnarray*} % FIGURE 8-15 % THERE SEEMS TO BE A PROBLEM WITH alpha and beta - they are the same thing? % Perhaps there was a minus sign somewhere? \begin{eqnarray*} \alpha &=& \frac{\sqrt{3}}{4} + \frac{1}{2} \\ \beta &=& \frac{1}{2} - \frac{\sqrt{3}}{4}, \alpha + \beta = 1 \end{eqnarray*} \begin{eqnarray*} W_0 &=&-\frac{16}{3}(r - \alpha)(r - \beta)(s - 1)(t - 1) \\ W_1 &=&\frac{16}{3}(r - \frac{1}{2})(r - \beta)(s - \frac{3}{4})(t - 1) \\ W_2 &=& -\frac{16}{3}(r - \frac{1}{2})(r - \beta)(s - \frac{1}{4})(t - 1) \\ W_3 &=& \frac{16}{3}(r - \alpha)(r - \beta)s(t - 1) \\ W_4 &=& -\frac{16}{3}(r - \frac{1}{2})(r - \alpha)(s - \frac{1}{4})(t - 1) \\ W_5 &=& \frac{16}{3}(r - \frac{1}{2})(r - \alpha)(s - \frac{3}{4})(t - 1) \end{eqnarray*} \begin{eqnarray*} W_6 &=& \frac{16}{3}(r - \alpha)(r - \beta)(s - 1)t \\ W_7 &=&-\frac{16}{3}(r - \frac{1}{2})(r - \beta)(s - \frac{3}{4})t \\ W_8 &=& \frac{16}{3}(r - \frac{1}{2})(r - \beta)(s - \frac{1}{4})t \\ W_9 &=& -\frac{16}{3}(r - \alpha)(r - \beta)st \\ W_{10} &=& \frac{16}{3}(r - \frac{1}{2})(r - \alpha)(s - \frac{1}{4})t \\ W_{11} &=& -\frac{16}{3}(r - \frac{1}{2})(r - \alpha)(s - \frac{3}{4})t \end{eqnarray*} % FIGURE 8-16 \begin{eqnarray*} W_0 &=& 2 \left( r - \frac{1}{2}\right)(r - 1) \\ W_1 &=& 2 r \left( r - \frac{1}{2}\right) \\ W_2 &=& 4 r (1 - r) \end{eqnarray*} % FIGURE 8-17 \begin{eqnarray*} W_0 &=& (1 - r - s)(2(1 - r - s) - 1) \\ W_1 &=& r (2 r - 1) \\ W_2 &=& s(2s - 1) \\ W_3 &=& 4 r (1 - r - s) \\ W_4 &=& 4 r s \\ W_5 &=& 4 s (1 - r-s) \end{eqnarray*} % FIGURE 8-18 \begin{eqnarray*} \xi &=& 2 r - 1, \quad \xi_i = \pm 1 \\ \eta &=& 2 s - 1, \quad \eta_i = \pm 1 \\ W_i &=& (1 + \xi_i \xi)(1 + \eta_i \eta)(\xi_i \xi + \eta_i \eta - 1)/4, \quad i \in \lbrace 0, 1, 2, 3 \rbrace \\ W_i &=& (1 - \xi^2)(1 + \eta_i \eta)/2, \quad i \in \lbrace 4, 6 \rbrace \\ W_i &=& (1 - \eta^2)(1 + \xi_i \xi)/2, \quad i \in \lbrace 5, 7 \rbrace \\ \end{eqnarray*} % FIGURE 8-19 \begin{eqnarray*} u &=& 1 - r - s- t \\ W_0 &=& u(2u-1) \\ W_1 &=& r(2r - 1) \\ W_2 &=& s(2s - 1) \\ W_3 &=& t (2t - 1) \\ W_4 &=& 4 u r \\ W_5 &=& 4 r s \\ W_6 &=& 4 s u \\ W_7 &=& 4 u t \\ W_8 &=& 4 r t \\ W_9 &=& 4 s t \end{eqnarray*} % FIGURE 8-20 \begin{eqnarray*} \xi &=& 2r - 1,\quad \xi_i = \pm1 \\ \eta &=& 2 s - 1,\quad \eta_i = \pm1 \\ \zeta &=& 2 t - 1,\quad \zeta_i = \pm1 \\ W_i &=& (1 + \xi_i \xi)(1 + \eta_i \eta)(1 + \zeta_i \zeta)(\xi_i \xi + \eta_i \eta + \zeta_i \zeta - 2)/8, \quad i \in \lbrace 1 \ldots 7 \rbrace \\ W_i &=& (1 - \xi^2)(1 + \eta_i \eta)(1 + \zeta_i \zeta)/4, \quad i \in \lbrace 8, 10, 12, 14 \rbrace\\ W_i &=& (1 - \eta^2)(1 + \xi_i \xi)(1 + \zeta_i \zeta)/4, \quad i \in \lbrace 9, 11, 13, 15 \rbrace \\ W_i &=& (1 - \zeta^2)(1 + \xi_i \xi)(1 + \eta_i \eta)/4, \quad i \in \lbrace 16, 17, 18, 19 \rbrace \end{eqnarray*} % FIGURE 8-21 \begin{eqnarray*} W_0 &=& (1 - r - s)(1 - t)(1 - 2r -2s -2t) \\ W_1 &=& r(1 - t)(2r - 2t - 1) \\ W_2 &=& s(1 - t)(2s - 2t - 1) \\ W_3 &=& (1 - r - s)t(2t - 2r - 2s - 1) \\ W_4 &=& rt(2r + 2t - 3) \\ W_5 &=& st(2s + 2t - 3) \\ W_6 &=& 4r(1 - r - s)(1 - t) \\ W_7 &=& 4rs(1 - t) \\ W_8 &=& 4s(1 - t)(1 - r - s) \\ W_9 &=& 4r(1 - r - s)t \\ W_{10} &=& 4 rst \\ W_{11} &=& 4 (1 - r - s)s t\\ W_{12} &=& 4 (1 - r - s)t(1 - t) \\ W_{13} &=& 4rt(1 - t) \\ W_{14} &=& 4st(1 - t) \end{eqnarray*} % FIGURE 8-22 \begin{eqnarray*} \xi &=& 2 r - 1, \quad \xi_i = \pm1 \\ \eta &=& 2 s - 1, \quad \eta_i = \pm1 \\ \zeta &=& 2 t - 1, \quad \zeta_i = \pm1 \\ W_i &=& (1 + \xi_i \xi)(1 + \eta_i \eta)(1 + \zeta_i \zeta)(\xi_i \xi + \eta_i \eta + \zeta_i \zeta - 2)/8, \quad i \in \lbrace 0, 1, 2, 3 \rbrace \\ W_4 &=& \zeta(1 - \zeta)/4 \\ W_i &=& (1 - \xi^2)(1 + \eta_i \eta)(1 + \zeta_i \zeta)/4, \quad i \in \lbrace 5, 6, 7, 8\rbrace \\ W_i &=& (1 - \zeta^2)(1 + \xi_i \xi)(1 + \eta_i \eta)/4, \quad i \in \lbrace 9, 10, 11, 12 \rbrace \end{eqnarray*} % EQUATION 8-7 \begin{equation*} \text{split edge if} (\epsilon_i > \epsilon_i^{\text{T}}), \quad \text{for all} \quad \epsilon_i \in E \end{equation*} % EQUATION 8-8 \begin{equation*} p = \sum_{i = 0}^{n - 1} W_i(r_0, s_0, t_0)\, p_i \end{equation*} % EQUATION 8-9 \begin{equation*} r = \frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0} \end{equation*} % EQUATION 8-10 \begin{eqnarray*} f(r, s, t) &=& x - \sum W_i \, x_i = 0 \\ g(r, s, t) &=& y - \sum W_i \, y_i = 0 \\ h(r, s, t) &=& z - \sum W_i \, z_i = 0 \end{eqnarray*} % EQUATION 8-11 \begin{eqnarray*} f(r, s, t) &\simeq& f_0 + \frac{\partial f}{\partial r}(r - r_0) + \frac{\partial f}{\partial s}(s - s_0) + \frac{\partial f}{\partial t}(t - t_0) + \ldots \\ g(r, s, t) &\simeq& g_0 + \frac{\partial g}{\partial r}(r - r_0) + \frac{\partial g}{\partial s}(s - s_0) + \frac{\partial g}{\partial t}(t - t_0) + \ldots \\ h(r, s, t) &\simeq& h_0 + \frac{\partial h}{\partial r}(r - r_0) + \frac{\partial h}{\partial s}(s - s_0) + \frac{\partial h}{\partial t}(t - t_0) + \ldots \\ \end{eqnarray*} % EQUATION 8-12 \begin{equation*} \left( \begin{array}{c} r_{i + 1} \\ s_{i + 1} \\ t_{i + 1} \end{array} \right) = \left( \begin{array}{c} r_i \\ s_i \\ t_i \end{array} \right) - \left( \begin{array}{c c c} \frac{\partial f}{\partial r} & \frac{\partial f}{\partial s} & \frac{\partial f}{\partial t} \\ \frac{\partial g}{\partial r} & \frac{\partial g}{\partial s} & \frac{\partial g}{\partial t} \\ \frac{\partial h}{\partial r} & \frac{\partial h}{\partial s} & \frac{\partial h}{\partial t} \end{array} \right)^{-1} \left( \begin{array}{c} f_i \\ g_i \\ h_i \end{array} \right) \end{equation*} % EQUATION 8-13 \begin{equation*} \frac{d s}{d r} = \frac{s_1 - s_0}{1} = (s_1 - s_0) \end{equation*} % EQUATION 8-14 \begin{equation*} \frac{d s}{d x'} = \frac{s_1 - s_0}{1} \end{equation*} % EQUATION 8-15 \begin{equation*} \frac{d}{d r} = \frac{d}{dx'} \frac{dx'}{dr} \end{equation*} % EQUATION 8-16 \begin{equation*} \frac{d}{d x'} = \frac{d}{dr}/ \frac{dx'}{dr} \end{equation*} % EQUATION 8-17 \begin{equation*} \frac{d x'}{d r} = \frac{d}{dr} \left(\sum_{i}W_i \, x_i' \right) = -x_0' + x_1' = 1 \end{equation*} % EQUATION 8-18 \begin{equation*} \vec{v} = \frac{\vec{x}_1 - \vec{x}_0}{\vert\vec{x}_1 - \vec{x}_0 \vert} \end{equation*} % EQUATION 8-19 \begin{eqnarray*} \frac{ds}{dx} &=& \left(\frac{s_1 - s_0}{1}\right) \vec{v} \cdot (1, 0, 0) \\ \frac{ds}{dy} &=& \left(\frac{s_1 - s_0}{1}\right) \vec{v} \cdot (0, 1, 0) \\ \frac{ds}{dz} &=& \left(\frac{s_1 - s_0}{1}\right) \vec{v} \cdot (0, 0, 1) \end{eqnarray*} % EQUATION 8-20 \begin{eqnarray*} \frac{\partial}{\partial x} &=& \frac{\partial}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial}{\partial t} \frac{\partial t}{\partial x} \\ \frac{\partial}{\partial y} &=& \frac{\partial}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial}{\partial t} \frac{\partial t}{\partial y} \\ \frac{\partial}{\partial z} &=& \frac{\partial}{\partial r} \frac{\partial r}{\partial z} + \frac{\partial}{\partial s} \frac{\partial s}{\partial z} + \frac{\partial}{\partial t} \frac{\partial t}{\partial z} \end{eqnarray*} % EQUATION 8-21 \begin{equation*} \left( \begin{array}{c} \frac{\partial}{\partial r} \\ \frac{\partial}{\partial s} \\ \frac{\partial}{\partial t} \end{array} \right) = \left( \begin{array}{c c c} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} & \frac{\partial z}{\partial r} \\ \frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} & \frac{\partial z}{\partial s} \\ \frac{\partial x}{\partial t} & \frac{\partial y}{\partial t} & \frac{\partial z}{\partial t} \end{array} \right) \left( \begin{array}{c} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{array} \right) = \mathbf{J}\left( \begin{array}{c} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{array} \right) \end{equation*} % EQUATION 8-22 \begin{equation*} \frac{\partial}{\partial r_i} = \sum_{j} J_{ij} \frac{\partial}{\partial x_j} \end{equation*} % EQUATION 8-23 \begin{equation*} \frac{\partial}{\partial x_i} = \sum_{j} J_{ij}^{-1} \frac{\partial}{\partial r_j} \end{equation*} % EQUATION 8-24 \begin{equation*} C_i = \lbrace p_1, p_2, \ldots, p_n \rbrace = P \end{equation*} % EQUATION 8-25 \begin{equation*} A(C_i, \overline{P}) = \left(\bigcap_{i} U(\overline{p}_i)\right) - C_i \end{equation*} % EQUATION 8-26 \begin{equation*} Y = 0.30 R + 0.59 G + 0.11 B \end{equation*} % EQUATION 8-27 \begin{equation*} Y = A(0.30 R + 0.59 G + 0.11 B) \end{equation*} % FIGURE 8-32 % Your choice, I made two versions. \begin{eqnarray*} i = \lfloor \frac{x-x_0}{x_1 - x_0} \rfloor \\ j = \lfloor \frac{y-y_0}{y_1 - y_0} \rfloor \\ k = \lfloor \frac{z-z_0}{z_1 - z_0} \rfloor \end{eqnarray*} \begin{eqnarray*} i = \text{floor}\left( \frac{x-x_0}{x_1 - x_0} \right) \\ j = \text{floor}\left( \frac{y-y_0}{y_1 - y_0} \right) \\ k = \text{floor}\left( \frac{z-z_0}{z_1 - z_0} \right) \end{eqnarray*} \begin{eqnarray*} r = \text{frac}\left( \frac{x-x_0}{x_1 - x_0} \right) \\ s = \text{frac}\left( \frac{y-y_0}{y_1 - y_0} \right) \\ t = \text{frac}\left( \frac{z-z_0}{z_1 - z_0} \right) \end{eqnarray*} % EQUATION 8-28 \begin{eqnarray*} g_x &=& \frac{d(x_0 + \Delta x_0, y_0, z_0) - d(x_0 - \Delta x_0, y_0, z_0)}{2 \Delta x_0} \\ g_y &=& \frac{d(x_0, y_0 + \Delta y_0, z_0) - d(x_0, y_0 - \Delta y_0, z_0)}{2 \Delta y_0} \\ g_z &=& \frac{d(x_0, y_0, z_0 + \Delta z_0) - d(x_0, y_0, z_0 - \Delta z_0)}{2 \Delta z_0} \end{eqnarray*} % EQUATION 8-29 \begin{eqnarray*} i &=& \text{id} \mod (n_x - 1) \\ j &=& \frac{\text{id}}{n_x - 1} \mod (n_y - 1) \\ k &=& \frac{\text{id}}{(n_x - 1)(n_y - 1)} \end{eqnarray*} % EQUATION 8-30 \begin{eqnarray*} 0 \leq i < n_x - 1 \\ 0 \leq j < n_y - 1 \\ 0 \leq k < n_z - 1 \end{eqnarray*} % EQUATION 8-31 \begin{eqnarray*} i = \text{int}\left( \frac{x-x_0}{x_1 - x_0} \right) \\ j = \text{int}\left( \frac{y-y_0}{y_1 - y_0} \right) \\ k = \text{int}\left( \frac{z-z_0}{z_1 - z_0} \right) \end{eqnarray*} % FIGURE 8-37 \begin{eqnarray*} n_T &=& 8^{\ell} \\ n_O &=& \sum_i 8^i \\ n_P &=& n_O - n_T \end{eqnarray*} Chapter 9 % EQUATION 9-1 \begin{equation*} n_i = \frac{w_i}{R} \end{equation*} \bf\tag{9-1} % EQUATION 9-2 \begin{equation*} F(r) = e^{-r}\cos(10\, r) \end{equation*} \bf\tag{9-2} % EQUATION 9-3 \begin{equation*} \Omega = \frac{\vec{v} \cdot \vec{\omega}}{\vert \vec{v} \vert \vert \vec{\omega} \vert} \end{equation*} \bf\tag{9-3} % EQUATION 9-4 \begin{equation*} e_{ij} = \epsilon_{ij} + \omega_{ij} \end{equation*} \bf\tag{9-4} % EQUATION 9-5 \begin{equation*} \mathbf{\epsilon} = \left( \begin{array}{c c c} \frac{\partial u}{\partial x} & \frac{1}{2}\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) & \frac{1}{2}\left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right) \\ \frac{1}{2}\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) & \frac{\partial v}{\partial y} & \frac{1}{2}\left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}\right) \\ \frac{1}{2}\left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right) & \frac{1}{2}\left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}\right) & \frac{\partial w}{\partial z} \end{array}\right) \end{equation*} \bf\tag{9-5} % EQUATION 9-6 \begin{equation*} \mathbf{\omega} = \left( \begin{array}{c c c} 0 & \frac{1}{2}\left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x}\right) & \frac{1}{2}\left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}\right) \\ \frac{1}{2}\left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) & 0 & \frac{1}{2}\left(\frac{\partial v}{\partial z} - \frac{\partial w}{\partial y}\right) \\ \frac{1}{2}\left(\frac{\partial w}{\partial x} - \frac{\partial u}{\partial z}\right) & \frac{1}{2}\left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z}\right) & 0 \end{array}\right) \end{equation*} \bf\tag{9-6} % EQUATION 9-7 \begin{equation*} \omega_{ij} = -\frac{1}{2}\sum_{k} \epsilon_{ijk}\, \omega_{k} \end{equation*} \bf\tag{9-7} % EQUATION 9-8 \begin{equation*} \vec{\omega} = \left( \begin{array}{c} \frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \\ \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \\ \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \end{array} \right) \end{equation*} \bf\tag{9-8} % EQUATION 9-9 \begin{equation*} r(\vec{v}) = r_\text{max} \sqrt{\frac{\vert\vec{v}_\text{min}\vert}{\vert\vec{v}\vert}} \end{equation*} \bf\tag{9-9} % EQUATION 9-10 \begin{eqnarray*} u &\simeq& \frac{\partial u}{\partial x}\text{d}x + \frac{\partial u}{\partial y}\text{d}y + \frac{\partial u}{\partial z}\text{d}z \\ v &\simeq& \frac{\partial v}{\partial x}\text{d}x + \frac{\partial v}{\partial y}\text{d}y + \frac{\partial v}{\partial z}\text{d}z \\ w &\simeq& \frac{\partial w}{\partial x}\text{d}x + \frac{\partial w}{\partial y}\text{d}y + \frac{\partial w}{\partial z}\text{d}z \end{eqnarray*} \bf\tag{9-10} % EQUATION 9-11 \begin{equation*} \vec{u} = \mathbf{J}\cdot\text{d}\vec{x},\quad \text{where} \quad \mathbf{J} = \left( \begin{array}{c c c} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{array} \right) \end{equation*} \bf\tag{9-11} % EQUATION 9-12 \begin{equation*} H_d = \vec{v} \cdot \vec{w} = \vert \vec{v} \vert \vert \vec{w} \vert \cos(\phi) \end{equation*} \bf\tag{9-12} % EQUATION 9-13 \begin{equation*} \vec{v} = \sum_i \lambda_i \vec{e}_i \end{equation*} \bf\tag{9-13} % EQUATION 9-14 \begin{equation*} \left(\hat{M} = M^n \right) \to M^{n - 1} \to \ldots \to M^1 \to M^0 \end{equation*} \bf\tag{9-14} % EQUATION 9-15 \begin{equation*} M^0 \to M^1 \to \ldots \to M^{n - 1} \to M^n \end{equation*} \bf\tag{9-15} % EQUATION 9-16 \begin{equation*} \text{edge collapse/split}(v_s, v_t, v_\ell, v_r, A) \end{equation*} \bf\tag{9-16} % EQUATION 9-17 \begin{equation*} \left(\hat{M} = M^n \right) \to M^{n - 1} \to \ldots \to M^1 \to \left(M^0 = M(V, \varnothing)\right) \end{equation*} \bf\tag{9-17} % EQUATION 9-18 \begin{equation*} \text{vertex split/merge}(v_s, v_t, v_\ell, v_r) \end{equation*} \bf\tag{9-18} % EQUATION 9-19 \begin{equation*} \vec{x}_{i+1} = \vec{x}_i + \lambda \vec{V}(i, j) = \vec{x}_i + \lambda \sum_{j = 0}^{n}\vec{x}_j - \vec{x}_i \end{equation*} \bf\tag{9-19} % EQUATION 9-20 \begin{equation*} e \leq \frac{\sqrt{3}}{2} \frac{L}{D} \end{equation*} \bf\tag{9-20} % EQUATION 9-21 \begin{equation*} e_\text{tot} \leq \frac{\sqrt{3}}{2}\left( \frac{L_\text{I}}{D_\text{I}} + \frac{L_\text{W}}{D_\text{W}}\right) + \frac{\Delta x}{2} \end{equation*} \bf\tag{9-21} % EQUATION 9-22 \begin{equation*} \text{SF}(x, y, z) = s\, \exp\left( -f(r/R)^2 \right) \end{equation*} \bf\tag{9-22} % EQUATION 9-23 \begin{equation*} \text{SF}(x, y, z) = s\, \exp\left( -f\left(\frac{(r_{xy}/E)^2 + z^2}{R^2}\right) \right) \end{equation*} \bf\tag{9-23} % EQUATION 9-24 \begin{eqnarray*} z &=& \vec{v}\cdot(\vec{p} - \vec{p}_i), \quad \text{where} \quad \vert \vec{v} \vert = 1 \\ r_{xy} &=& r^2 - z^2 \end{eqnarray*} \bf\tag{9-24} % EQUATION 9-25 \begin{equation*} F(p) = \frac{\sum_i^n \frac{F_i}{\vert p - p_i\vert^2}}{\sum_i^n \frac{1}{\vert p - p_i \vert^2}} \end{equation*} \bf\tag{9-25} % EQUATION 9-26 \begin{equation*} \frac{\partial F}{\partial x} = \frac{\partial F}{\partial y} = \frac{\partial F}{\partial z} = 0 \end{equation*} \bf\tag{9-26} Chapter 10 % EQUATION 10-1 \begin{equation*} g(i, j) = \frac{1}{2\pi \sigma^2} \exp\left(-\frac{i^2 + j^2}{2\sigma^2} \right) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{i^2}{2\sigma^2} \right) \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{j^2}{2\sigma^2} \right) \end{equation*} \bf\tag{10-1} % FIGURE 10-2 \begin{equation*} f \star k(x, y) = \sum_{i, j} f(i, j) k(x - i, y - j) \end{equation*} \bf\tag{10-2} % EQUATION 10-2 \begin{equation*} H(u, v) = \frac{1}{1 + \left(\frac{C^2}{u^2 + v^2}\right)^n} \end{equation*} \bf\tag{10-2} % FIGURE 10-10 \begin{equation*} F(u, v) = \frac{1}{MN} \sum_{x=0}^{M-1}\sum_{y=0}^{N-1} f(x, y)\, \exp\left(-2\pi j \left(\frac{x u}{M} + \frac{y v}{N}\right)\right) \end{equation*} \bf\tag{10-10} % FIGURE 10-11 \begin{equation*} H(u, v) = \begin{cases} 1 & u^2 + v^2 < C^2 \\ 0 & \text{otherwise} \end{cases} \end{equation*} \bf\tag{10-11} % The Butterworth filter is equation 10-2 above. % EQUATION 10-3 \begin{equation*} F(x, y) = \sin\left(\frac{x}{10}\right) + \sin\left(\frac{y}{10}\right) \end{equation*} \bf\tag{10-3}